If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x-10=0
a = 3; b = -24; c = -10;
Δ = b2-4ac
Δ = -242-4·3·(-10)
Δ = 696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{696}=\sqrt{4*174}=\sqrt{4}*\sqrt{174}=2\sqrt{174}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{174}}{2*3}=\frac{24-2\sqrt{174}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{174}}{2*3}=\frac{24+2\sqrt{174}}{6} $
| 2x+(2x-7)=44 | | 3w+2=w=2.5 | | 4y+12=76 | | M=7,31m | | 91=2r+7 | | 6(x+5)=9x-2 | | 2x+(x-7)=44 | | 0=-2r+98 | | 18+3x=36-3x | | √x+1=√2+1 | | 15+x=5-4x | | 13=x,0 | | 2y-41=57 | | (x-8/x)^2+5(x-8/x)-14=0 | | 2x+4=3(2x-2) | | 32=3r | | 13x=7x+25 | | 6+3x-8=2x-14-3x | | x+(3x)+(5x+2)=47 | | 5(x–7)+4=34 | | 12x-28=7x-73 | | 6(x+2)+2x−4=8(x−2)+8 | | 11x+3+42=13x+21 | | 6+3x-8=2x-143x | | 5x^2-196-49=0 | | 3(x-4)=7x+8-5x | | 5x-6=-x+48 | | 4(x–7)+4=36 | | 3(x-4)=7x+8-5 | | (3x)(3x)(3x)+(x*x)-24x-8=0 | | 12(2w−3)=6w | | 91=2x+7 |